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well-annotated datasets significantly constrains supervised 
deep learning for medical image tasks [9, 10]. This limi-
tation is particularly pronounced in real-world clinical set-
tings, where data access, privacy concerns, and resource 
constraints hinder large-scale annotation efforts. The devel-
opment of approaches to reduce this reliance on large-scale 
datasets with structured annotations is critical.

Transfer learning with pretrained models is a primary 
method for enhancing performance with limited samples 
and has gained widespread acceptance for medical image 
analysis processes [11]. In image classification tasks, several 
unsupervised pretrained algorithms exist [12–14]. Recently, 

Introduction

Chest X-rays (CXRs) are a commonly used imaging tech-
nique, with at least 2  billion global annual instances [1]. 
There is significant interest in the development of CXR 
analysis technology [2]. Deep learning techniques, par-
ticularly convolutional neural networks (CNNs) [3], have 
been found to achieve expert-level performance in interpret-
ing medical images [4–6]. However, the success of these 
models heavily relies on substantial volumes of data and 
high-quality annotations, which often require collaboration 
among multiple experts [7, 8]. The current lack of large, 
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a multimodal model called contrastive language-image pre-
training (CLIP), which is trained with text-and-image pairs, 
has demonstrated superior accuracy in downstream tasks 
[15]. In the medical field, especially for CXRs, electronic 
health records often include corresponding reports writ-
ten by radiologists, making it feasible to adopt CLIP-like 
approaches for CXR analysis. Models such as ConVIRT, 
BioMedCLIP, and MedCLIP have used to apply similar 
techniques in this context, although most have been evalu-
ated in large-scale or zero-shot scenarios [16–18]. While 
zero-shot prediction is quite convenient in applications, the 
CLIP model with linear probing, which uses more than 4 
labeled training examples per class, surpasses the accuracy 
of zero-shot prediction [15]. Despite this progress, a gap 
remains in understanding how such models perform in gen-
uinely small-sample regimes where data availability falls 
far short of the traditional supervised learning thresholds. 
However, for clinical validation and FDA approval, AI mod-
els require a minimum of several hundred samples for each 
specific indication [19]. Thus, it is essential to explore small 
sample learning using the CLIP model for CXR analysis.

Large-scale studies show promise in using multimodal 
models such as CLIP for CXR analysis, but small sample 
learning remains underexplored. Current research focuses 
on large datasets and lacks the benefits of smaller, man-
ageable datasets. No comprehensive studies have evaluated 
pretrained multimodal models with small sample sizes for 
CXRs. While existing works have demonstrated strong 
zero-shot performances, little attention has been given to 

evaluating such models under constrained supervision. In 
this study, we address this gap by proposing and evaluat-
ing the pretraining approach for small-sample training 
employing radiographs (PASTER), which combines con-
trastive vision-language pretraining with linear probing 
to enable accurate CXR interpretation from limited data. 
We compare PASTER with traditional CNNs across vari-
ous sample sizes, highlighting its potential for high accu-
racy with minimal data. The PASTER workflow is shown 
in Fig. 1: starting with contrastive learning using free-text 
reports and chest radiographs (Fig. 1A), the vision Trans-
former then extracts features from a limited sample pool, 
followed by a logistic regression analysis (Fig. 1B). Using 
only 128 cases with 384 controls achieved a highly satis-
factory performance.

The main methodological contributions of this study are 
as follows:

1.	 We propose PASTER, a multimodal contrastive pre-
training framework tailored for small-sample chest 
X-ray interpretation.

2.	 We evaluate its performance across varying dataset 
sizes and show that it achieves an accuracy comparable 
to that of fully supervised CNNs using only a fraction of 
the data.

3.	 We adopt linear probing as a lightweight adaptation 
method and demonstrate its effectiveness in lever-
aging pretrained representations under constrained 
supervision.

Fig. 1  PASTER training and application workflow. (A) Contrastive 
learning using free-text reports and chest radiographs to identify paired 
associations. (B) Vision Transformer extracts features from a limited 

sample pool, followed by logistic regression with regularization. 
Using 128 cases and 384 controls achieved satisfactory performance
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Materials and methods

Datasets

This algorithm development study was based on data from 
the Tri-Service General Hospital in Taiwan to develop a 
deep learning model (DLM). The study was approved by 
the Institutional Review Board of the Tri-Service Gen-
eral Hospital, National Defense Medical Center (IRB NO. 
C20230519), in accordance with the Declaration of Hel-
sinki. All the data were obtained from the hospital’s qual-
ity control center, were fully anonymized prior to analysis, 
and were exempt from informed consent as approved by 
the IRB. Tri-Service General Hospital provided a private 
database of 1,105,436 AP or PA viewed CXRs from Janu-
ary 1, 2011, to February 28, 2022. The training set included 
1,004,314 CXRs paired with radiological reports and anno-
tated with 31 radiological labels. To prevent cross-contam-
ination, a strict dataset split strategy was applied (Fig. 2). 
We subsampled the training set into five sizes: 2,000 
(0.2%), 10,000 (1.0%), 50,000 (5.0%), 200,000 (20.0%), 
and 1,004,314 (100.0%). The internal and external test 
sets from hospitals A and B contained 101,122 and 81,614 
CXRs, respectively. To avoid sample interdependence, only 
one CXR was used for each patient. The training dataset 

included more than one million CXRs from two hospitals. 
The average ages in the training, internal test, and external 
test sets were 58.0 ± 21.2, 48.1 ± 21.0, and 51.6 ± 21.3 years, 
respectively, with male percentages of 55.1%, 51.6%, and 
50.5%, respectively. The detailed patient characteristics 
and dataset distributions are shown in Table 1 and Extended 
Data Table 1. For a subset with echocardiographic labels, 
details are provided in Table 2 and Extended Data Table 2.

The CheXpert dataset, consisting of 224,316 CXRs 
from 65,240 patients at Stanford Hospital, was used to 
evaluate small-sample learning [20]. Only frontal CXRs 
were included, resulting in a training set of 191,027 CXRs. 
The dataset is labeled for 14 conditions, with a focus on 
five conditions: atelectasis, cardiomegaly, consolidation, 
edema, and pleural effusion. The test set included 668 
CXRs from 500 patients. The distribution details are pro-
vided in Table 3.

The ChestX-ray14 dataset from the NIH Clinical Center 
includes 112,120 frontal CXRs from 30,805 patients [21]. 
The training set included 86,524 CXRs, and the test set 
included 25,596 CXRs. We selected eight labels for cross-
database performance assessment: atelectasis, cardiomeg-
aly, consolidation, edema, pleural effusion, emphysema, 
pneumonia, and pneumothorax. Detailed distribution infor-
mation is available in Table 4.

Fig. 2  Dataset creation and analysis strategy. Schematic ensuring robust training and testing by using patient data in only one set to avoid 
cross-contamination
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Table 1  Distribution of structured radiological labels in the private 
dataset

Training set Internal test set External test 
set

Radiological 
labels†

n = 1,004,314 n = 101,122 n = 81,614

Consolidation 
change

77,119(7.7%) 2332(2.3%) 1836(2.2%)

Pneumonia 22,606(2.3%) 798(0.8%) 550(0.7%)
Emphysematous 
change

21,163(2.1%) 1011(1.0%) 1114(1.4%)

Pneumothorax 13,346(1.3%) 399(0.4%) 282(0.3%)
Atelectasis 34,101(3.4%) 1060(1.0%) 839(1.0%)
Scalloping of 
the diaphragm

22,459(2.2%) 1812(1.8%) 1877(2.3%)

Costophrenic 
angle blunting

437,443(43.6%) 22,638(22.4%) 19,899(24.4%)

Pleural effusion 237,838(23.7%) 8727(8.6%) 7856(9.6%)
Atherosclerosis 505,309(50.3%) 32,690(32.3%) 31,520(38.6%)
Cardiomegaly 292,483(29.1%) 14,379(14.2%) 12,688(15.5%)
Prominence of 
hilar shadow

164,002(16.3%) 7010(6.9%) 5868(7.2%)

Pulmonary 
edema

53,235(5.3%) 1281(1.3%) 1054(1.3%)

Aneurysm 1787(0.2%) 64(0.1%) 53(0.1%)
Degenerative 
joint disease

452,835(45.1%) 29,814(29.5%) 28,911(35.4%)

Fracture 104,228(10.4%) 5236(5.2%) 4617(5.7%)
Spondylosis 299,812(29.9%) 16,830(16.6%) 16,652(20.4%)
Osteophyte 
formation

393,814(39.2%) 24,844(24.6%) 23,886(29.3%)

Osteoporosis 98,472(9.8%) 4735(4.7%) 5152(6.3%)
Osteoarthritis 228,868(22.8%) 12,197(12.1%) 11,597(14.2%)
Widening of the 
mediastinum

185,558(18.5%) 9540(9.4%) 9083(11.1%)

Malignancy 20,088(2.0%) 721(0.7%) 543(0.7%)
Inflammatory 326,035(32.5%) 15,823(15.6%) 14,017(17.2%)
Pigtail or 
drainage

41,408(4.1%) 942(0.9%) 591(0.7%)

Sternotomy 55,352(5.5%) 1174(1.2%) 1252(1.5%)
Port A 
implantation

72,678(7.2%) 2101(2.1%) 1714(2.1%)

Perm catheter 
insertion

33,975(3.4%) 734(0.7%) 584(0.7%)

Pacemaker 15,128(1.5%) 480(0.5%) 523(0.6%)
Tracheostomy 53,939(5.4%) 633(0.6%) 723(0.9%)
Vertebroplasty 12,062(1.2%) 436(0.4%) 423(0.5%)
Endotracheal 
tube

94,500(9.4%) 2153(2.1%) 1110(1.4%)

Nasogastric 
tube

192,923(19.2%) 4382(4.3%) 3044(3.7%)

†These structured radiological labels were preselected by each 
board-certified radiologist when free-text reports were composed. In 
theory, the content of the free-text reports is expected to encompass 
these labels, but they may also include free-text descriptions beyond 
the scope of these labels

Table 2  Distribution of structured echocardiographic labels in the pri-
vate dataset

Training set Internal test 
set

External test 
set

Echocardiographic 
labels‡

n = 150,911 n = 10,318 n = 8861

Left ventricular 
dysfunction

11,637(7.7%) 377(3.7%) 268(3.0%)

Aortic stenosis 2255(1.5%) 93(0.9%) 95(1.1%)
Pulmonary arterial 
hypertension

18,729(12.4%) 681(6.6%) 621(7.0%)

Left atrial 
enlargement

29,644(19.6%) 1383(13.4%) 1319(14.9%)

Pericardial effusion 2312(1.5%) 81(0.8%) 58(0.7%)
‡These abnormal echocardiographic findings were extracted from 
structured cardiac ultrasound reports obtained within ± 7 days of 
examination. Notably, the board-certified radiologists composing the 
free-text reports did not have access to these specific results during 
their reporting process. The definitions for these findings are as fol-
lows: left ventricular dysfunction, defined as a left ventricular ejec-
tion fraction ≤ 35%; aortic stenosis, defined as moderate [jet velocity 
3.0–4.0 m/s, mean gradient of 20–49 mmHg, or an aortic valve area 
of 1.1–1.5 cm2] to severe [jet velocity ≥ 4.0  m/s, mean gradient ≥ 40 
mmHg, a dimensionless velocity index (DVI) of ≤ 0.25, or an AVA of 
≤ 1.0 cm2]; (3) pulmonary arterial hypertension, defined as a systolic 
pulmonary artery pressure > 50 mmHg (peak tricuspid regurgitation 
velocity > 3.4 m/s); (4) left atrial enlargement, defined as a left atrial 
diameter > 45  mm; and (5) pericardial effusion, defined as an effu-
sion > 1 cm. Left ventricular dysfunction [41] is considered challenging 
for radiologists to identify directly, despite prior deep learning research 
confirming the potential existence of subtle signs in CXR. Aortic ste-
nosis [42], pulmonary arterial hypertension [43], left atrial enlargement 
[44], and pericardial effusion [45] are also difficult to interpret directly 
but can be indirectly inferred by radiologists through other features

Table 3  Distribution of structured labels in the chexpert dataset
Training set Validation set Test set

CheXpert labels n = 191,027 n = 202 n = 500
Atelectasis 112,217(58.7%) 75(37.1%) 153(30.6%)
Cardiomegaly 111,420(58.3%) 66(32.7%) 151(30.2%)
Consolidation 98,094(51.4%) 32(15.8%) 29(5.8%)
Edema 88,580(46.4%) 42(20.8%) 78(15.6%)
Pleural Effusion 93,189(48.8%) 64(31.7%) 104(20.8%)

Table 4  Distribution of structured labels in the ChestX-ray14 dataset
Training set Test set

ChestX-ray14 labels n = 86,524 n = 25,596
Atelectasis 8280(9.6%) 3255(12.7%)
Cardiomegaly 1707(2.0%) 1065(4.2%)
Consolidation 2852(3.3%) 1815(7.1%)
Edema 1378(1.6%) 925(3.6%)
Pleural Effusion 8659(10.0%) 4648(18.2%)
Pneumothorax 2637(3.0%) 2661(10.4%)
Pneumonia 876(1.0%) 477(1.9%)
Emphysema 1423(1.6%) 1093(4.3%)
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AUC. The selected model fit by the hyperparameter with 
the highest cross-validation AUC was subsequently applied 
directly to the test set. More details can be found in the code 
availability section. Note that owing to the high sensitiv-
ity of small sample training to random sample selection, all 
model fittings using linear probing were repeated 21 times. 
The results were then determined on the basis of the median 
accuracy across these 21 models.

Zero-shot Prediction

We conducted zero-shot experiments on each dataset 
using the labels in its test set to generate “< label>” and 
“no < label>” prompts for the softmax evaluation process.

Convolutional Neural Network

We used a 121-layer DenseNet architecture [22] to adapt to 
the training methodology for CXR from our previous study 
[23]. Our approach began with pretraining DenseNet on the 
ImageNet dataset. The parameters for each CXR network 
were initialized using parameters from the pretrained net-
work of the ImageNet dataset. We updated the parameters 
of the DLMs to minimize cross-entropy losses, incorporat-
ing an oversampling technique based on class weights com-
puted from the prevalence of each class in the training set. 
Because we initially attempted to train a single network for 
all labels but found that the accuracy was not satisfactory, 
we ultimately opted to train a separate network for each 
label.

During training, 90% of each subset was used for model 
fitting, and 10% was used for validation. This procedure 
was applied to all the datasets. For Tri-Service General 
Hospital, we used five training proportions, namely, 0.2%, 
1.0%, 5.0%, 20.0% and 100.0%. For CheXpert and ChestX-
ray14, we used three proportions, which were 1.0%, 10.0% 
and 100.0%. All network parameters were fine-tuned using 
the Adam optimizer with standard parameters, utilizing a 
batch size of 32 and an initial learning rate of 0.001. We 
reduced the learning rate by a factor of 10 whenever the val-
idation loss plateaued after an epoch. To prevent overfitting, 
we implemented early stopping by saving the network after 
each epoch and selecting the saved network with the highest 
validation AUC. During training, we used random cropping 
of a 224 × 224-pixel region as input, with a 50% chance of 
applying a random horizontal flip. In the inference stage, we 
employed a 10-crop evaluation method to generate 10 prob-
abilities for each CXR, and the final prediction was based on 
the average of these 10 probabilities.

The networks were trained for more than 50 epochs: 
including more than 30 epochs at a learning rate of 0.001 
(Stage 1), more than 10 epochs at a learning rate of 0.0001 

Foundation Model Pre-training

PASTER was developed using OpenAI’s CLIP model, 
which incorporates an image encoder and a text encoder 
[15]. The image encoder uses the ViT-B/32 architecture, 
which is designed to process 256 × 256-sized images. Input 
images were initially divided into 32 × 32-sized image 
patches, which were then processed through 12 Trans-
former layers with a hidden size of 768, producing a com-
pressed output as a 512-dimensional vector for each patch. 
The text encoder was a standard language Transformer with 
512 token embeddings, a maximum token length of 256, 12 
layers, a hidden size of 512, and 8 attention heads. Before 
the images and text were input into their respective encod-
ers, an additional [CLS] token was added, and the output 
from the [CLS] token was used as an embedding for both 
the CXR and the report. During backpropagation, the inner 
product between these two embeddings was calculated, and 
the error was passed through softmax and cross-entropy loss 
for optimization. A schematic pseudocode illustrating the 
contrastive pretraining procedure is provided in Extended 
Fig. 1 [15].

All the technical details closely adhered to OpenAI’s 
CLIP model, and the weights of this model were used as the 
initialization parameters [15]. During pretraining, we ran-
domly split 1,004,314 CXRs from the Tri-Service General 
Hospital database into 90% for model fitting and 10% for 
validation. All network parameters were fine-tuned using 
the standard parameters of an SGD optimizer, with a batch 
size of 64, a learning rate of 0.0001, and a momentum of 
0.9. Throughout the training, the images were randomly 
cropped to a size of 256 × 256 pixels. The model was trained 
for 50 epochs, with the validation loss computed at the end 
of each epoch to select the best-performing model. Model 
training was conducted in a Python environment, version 
3.10.10, utilizing the “torch” package version 2.0.1.

Linear Probing

We conducted linear probing of CXR embeddings using the 
“glmnet” package version 2.0–16 in R software 3.4.4. This 
package uses the elastic net algorithm, which includes both 
L1 and L2 regularization terms within logistic regression. 
For each task, we oversampled the samples to ensure an 
equal number of cases and controls. Afterward, we divided 
the samples into four subsets for cross-validation, utiliz-
ing the “cv.glmnet” function. During cross-validation, we 
searched for the optimal values of lambda (the regulariza-
tion hyperparameter) in the range from e−9 to e−1 (a loga-
rithmically spaced sequence of length 45) and alpha (the 
ratio of L1 and L2 penalties) in the range from 0 to 1 (with 
increments of 0.1), aiming to maximize the cross-validation 
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supervised contrastive learning in small sample learning 
[26], we attempted to modify the text encoder of PASTER. 
We replaced it with a multilayer perceptron (MLP), which 
takes 31 labels as input. The first hidden layer contains 512 
neurons, and subsequently, each hidden layer maintains 512 
neurons while incorporating the concept of residual learn-
ing to establish shortcuts between layers. After five hid-
den layers, the model directly outputs the results. Finally, 
we compared our approach to a ViT trained for multilabel 
training using cross-entropy loss with direct utilization of 
31 structured labels. This ViT is a separate model, distinct 
from the ViT trained individually for each label. We uti-
lized its final layer’s high-level features for linear probing 
comparisons. All these additional models were trained with 
identical hyperparameter settings, and we selected the one 
with the lowest validation loss after each epoch for further 
comparison.

We also compared the results obtained by initializing the 
weights using PASTER and conducting full-parameter fine-
tuning. Since full-parameter fine-tuning is not suitable for 
small sample learning, this experiment was conducted only 
with sample sizes ranging from 0.2 to 100%.

Model Comparison

The proposed PASTER shares a similar training technique 
with previous models such as ConVIRT, which was trained 
on the publicly available MIMIC-CXR dataset. MedCLIP 
also adopts a similar vision-language contrastive pretrain-
ing framework; however, since its training involved the 
CheXpert dataset, we excluded it from CheXpert-related 
evaluations to avoid potential data contamination [18]. In 
addition to ConVIRT and MedCLIP, we also included other 
pretrained models that use different techniques, such as Bio-
ViL-T, which is based on series-alignment techniques such 
as those in the BioViL family; MoCo-CXR [27, 28], which 
modifies the contrastive learning framework Momentum 
Contrast (MoCo) for CXR interpretation; and SupCon [26], 
a contrastive learning method based on structured labels 
in CheXpert. Since ChestX-ray14 lacks results from small 
sample training, we utilized fully supervised learning results 
as a benchmark [21]. Given that these models do not have 
publicly available checkpoints for direct comparison, we 
extracted performance figures from published papers.

Cross-modal Retrieval

To evaluate the cross-modal retrieval capability of the pro-
posed model, we conducted retrieval experiments using 
1,000 randomly selected radiology reports as queries. All 
reports were sourced from private datasets (an internal test 
set and external test set), each paired with a corresponding 

(Stage 2), and more than 10 epochs at a learning rate of 
0.00001 (Stage 3). In most cases, the model with the highest 
AUC on the tuning subset was often found in Stages 2 and 
3. The sole regularization technique used to prevent overfit-
ting was a weight decay of 10−4 in this study. Model training 
was conducted using the R version 3.4.4 software environ-
ment with the “MXNet” package version 1.3.0.

Vision Transformer

Owing to prior research highlighting the advantages of 
vision Transformers (ViT) over convolutional neural net-
works in medical image analysis [24], we also trained a 
series of models based on the ViT-B/32 [25] architecture for 
comparison. Like in our CNNs experiments, we trained sep-
arate ViTs for each label and initialized the model weights 
using checkpoints pretrained on the ImageNet dataset. Dur-
ing training, 90% of each database subset was used for 
model fitting, and 10% was used for validation. We selected 
the model with the highest validation AUC for evaluation 
on the test set. Furthermore, we followed training details 
similar to those of the original ViT [25], including the use 
of the SGD optimizer with hyperparameters set to a cosine 
warmup learning rate starting from 3 × 10−3, a momentum 
of 0.9, a batch size of 64, and a total number of epochs of 
50. During training, we randomly cropped a 256 × 256-pixel 
region as input without applying horizontal flipping. In the 
inference stage, we took the central 256 × 256-pixel region 
as input. Model training was conducted in the Python ver-
sion 3.10.10 software environment, utilizing the “torch” 
package version 2.0.1.

Models in Ablation Experiments

We sought to emphasize the importance of the hyperparame-
ter searching approach in linear probing. To do this, we used 
the same PASTER model for extracting CXR embeddings 
and kept lambda = 0.001 and alpha = 0 as fixed hyperparam-
eters in the elastic net algorithm for our initial experiment. 
The training process of this model resembled that of ViT, 
with the only difference being the weight initialization. The 
criterion for selection was based on the average AUC calcu-
lated for 31 radiological labels at the end of each epoch. We 
chose the epoch with the highest validation AUC for further 
CXR embedding extraction.

Since the architecture of PASTER is based on Trans-
formers, and prior research has indicated that Transform-
ers outperform convolutional neural networks in medical 
image analysis [24], we changed the image encoder of 
PASTER. Instead of ViT/B-32, we replaced it with a 121-
layer DenseNet. Additionally, since an earlier study sug-
gested there are benefits in using structured labels for 
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predict the ultimate accuracy of a task with a limited sample 
size.

To visualize the differences between different datasets, 
we extracted CXR embeddings using PASTER, and then 
reduced the original 512-dimensional vectors to 2 dimen-
sions using the uniform manifold approximation and pro-
jection (UMAP) technique. It is essential to emphasize that 
this visualization method relies on highly nonlinear axes, 
rendering the assignment of interpretable units to either axis 
impossible. This analysis was performed using the “umap-
learn” package version 0.5.5 in Python version 3.10.10 with 
default parameters.

Results

Supplementary Data 1 compares PASTER, DenseNet (a 
CNN), and the vision Transformer in terms of the AUC for 
all 31 radiological labels and the mean AUC. We initially 
explored the most suitable ratio of cases (with < label>) to 
controls (without < label>) for small sample learning. It is 
widely known that the optimal ratio is 1:1, but owing to 
the often limited number of cases, we attempted to increase 
the number of controls to enhance model performance. 
Detailed results for different numbers of cases are presented 
in Extended Fig. 2. We observed that the ratio of controls to 
cases reached the highest mean AUC (0.865/0.862 in inter-
nal/external test sets) when it was 3, with further increases in 
the number of control samples showing diminishing returns. 
We also provided results for cases with a count of 128, and 
similarly, we found that the efficiency decreased beyond a 
control-to-case ratio of 3. Therefore, for subsequent small 
sample learning experiments, we fixed the ratio of cases to 
controls at 1:3.

The average results are summarized in Fig. 3. PASTER 
achieved average AUCs of 0.907 and 0.903 on the inter-
nal and external test sets, respectively, when only 128 cases 
and 384 controls were used, closely matching DenseNet’s 
performance with the full dataset (n = 1,004,314). PASTER 
also outperformed ViT, which achieved average AUCs of 
0.890 and 0.885 on the internal and external test sets, respec-
tively. PASTER consistently outperformed DenseNet, even 
with larger training samples. MedCLIP achieved AUCs 
of 0.901 on the internal test set and 0.903 on the external 
test set, whereas BioViL-T showed lower performance, 
with AUCs of 0.859 on the internal test set and 0.861 on 
the external test set. Compared with both MedCLIP and 
BioViL-T, PASTER demonstrated superior performance 
across all the evaluations. Extended Fig. 3 A shows the 
AUC differences between PASTER and DenseNet under 
the same sample sizes. Compared with DenseNet, PAS-
TER achieves median AUC differences of 15.6%/14.2%, 

chest X-ray image. For each text query, the cosine simi-
larity between the encoded text representation and all the 
image embeddings in the candidate pool was computed. 
The retrieved images were ranked on the basis of similarity 
scores. We reported Recall@1 and Recall@5, which mea-
sure the proportion of queries where the ground-truth image 
appears in the top 1 or top 5 retrieved results, respectively. 
All the retrieval experiments were conducted using fixed 
pretrained encoders without further fine-tuning.

Statistical Analysis

We chose the AUC as the primary metric for evaluat-
ing model accuracy. AUC is calculated on the basis of the 
receiver operating characteristic (ROC) curve, which com-
pares sensitivity and specificity at different thresholds. Since 
all the datasets in this study are multilabel, and direct aver-
aging does not align with a clinical perspective, our primary 
model performance comparison involved calculating AUC 
differences for each label between the two models. We pres-
ent these differences as medians (interquartile ranges, IQRs) 
and illustrate the percentage of cases where the difference is 
> 0 (indicating that the first model outperforms the second). 
Additionally, in the supplementary appendix, we provided 
accuracy comparisons for each label, including mean AUC 
comparisons. To assess model classification performance, 
we visualized confusion matrices for key radiological and 
echocardiographic labels, using rowwise normalized per-
centages to highlight sensitivity and specificity across inter-
nal and external test sets.

We employed a nonparametric bootstrap approach to 
generate these confidence intervals (CIs). Specifically, we 
repeatedly sampled random subsets of size n (matching the 
number of samples in the internal test set) from the origi-
nal dataset, with replacement, for a total of 1,000 iterations. 
AUC values or differences were estimated for each of these 
bootstrap samples. The CIs were derived from the relative 
frequency distribution of these estimates across the resam-
ples. We calculated the interval between the 100×(α/2) and 
100 × (1 − α/2) percentiles, with α set to 0.05. For AUC dif-
ferences, we also examined how many values in the same 
bootstrap distribution were more extreme than 0 to calcu-
late a one-tailed p value. Finally, we presented the results as 
two-tailed p values for all the statistical tests.

We also assessed the correlation between the AUC 
obtained with different sample sizes and the AUC from 
the full sample using Pearson correlation coefficients. The 
specific approach involved using the AUC obtained during 
small sample learning as the input and the AUC from the 
full sample as the output, with each data point represent-
ing the results for each label. Additionally, we performed a 
linear regression, which can be used by future researchers to 
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while Fig. 4 presents the average results. PASTER achieved 
average AUCs of 0.840 and 0.842 on the internal and exter-
nal test sets, respectively, when only 128 cases and 384 con-
trols were used, which are close to DenseNet’s performance 
with 100% of the samples (n = 150,911), which achieved 
AUCs of 0.838 and 0.852, respectively. MedCLIP achieved 
higher AUCs of 0.885 on the internal test set and 0.883 
on the external test set when it was trained with 100% of 
the samples. However, PASTER consistently outperforms 
MedCLIP under limited sample settings, demonstrating its 
advantage in small-sample learning scenarios. The perfor-
mance of PASTER was evaluated using different sample 
sizes to understand the impact of training sample size on 
model performance. Extended Fig. 5  illustrates the differ-
ences in the AUCs between PASTER and DenseNet for 
the same sample sizes. We observe that the median AUC 
differences on the 5 echocardiographic labels increase by 
5.7%/4.0%, 3.6%/2.9%, and 2.0%/2.0% in the internal/
external test sets when 5%, 20%, and 100% of the train-
ing samples are used, respectively. When comparing PAS-
TER using only 128 cases and 384 controls with DenseNet 
(20%), DenseNet (100%), and PASTER (100%), we note 
that PASTER achieves AUC differences with median val-
ues slightly lower by 0.2% (internal) and 0.3% (external) 
compared to DenseNet (100%). Similarly, PASTER out-
performs DenseNet (20%), and the use of full samples still 
leads to improved accuracy for PASTER across all echocar-
diographic labels. More detailed comparisons are presented 
in Supplementary Data 4. We further assessed the correla-
tion between the AUC obtained with different sample sizes 

8.4%/7.0%, 7.1%/6.9%, 4.3%/4.5%, and 1.0%/0.9% in 
the internal/external test sets for training samples of 0.2%, 
1%, 5%, 20%, and 100%, respectively. The results show 
that PASTER outperforms DenseNet on all radiological 
labels when the number of training samples is less than 
200,000. Importantly, even when 100% of the samples 
were used, compared with DenseNet, PASTER maintained 
an advantage in 87.1%/83.9% of the radiological labels in 
the internal/external test sets. Extended Fig. 3B illustrates 
the comparison between PASTER using only 128 cases 
and 384 controls and DenseNet (20%), DenseNet (100%), 
and PASTER (100%). We observed that the performance 
of PASTER in small-sample learning closely matches that 
of DenseNet (100%), with only a slight difference (0.2%) 
in the median AUC difference. Furthermore, PASTER out-
performs DenseNet (20%) significantly. Finally, when full 
samples were used for linear probing, PASTER performs 
better than small sample learning across all radiological 
labels did, albeit with minimal differences (median [inter-
nal]: −1.4% [IQR: −2.2%, −0.8%] and median [external]: 
−1.4% [IQR: −1.9%, −0.7%]). More detailed comparisons 
are presented in Supplementary Data 2. PASTER performs 
worse in zero-shot prediction than in small-sample learning 
for most labels. Confusion matrices for each radiological 
label are presented in Extended Fig. 2 to visualize classifica-
tion patterns across internal and external test sets.

We further explored the performance of PASTER on five 
echocardiographic labels. Supplementary Data 3 provides 
a detailed comparison of PASTER, MedCLIP, BioViL-T, 
DenseNet, and ViT for each label’s AUC and mean AUC, 

Fig. 3  Average AUC across 31 
radiological labels using linear 
probing under varying sample 
sizes for PASTER, BioViL-
T, MedCLIP, DenseNet, and 
ViT. Models were trained with 
increasing numbers of samples, 
and average AUC values were 
computed across 31 radiological 
labels
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prediction was notably lower than that on radiological labels, 
with all correlation coefficients below 0.4. However, when 

and the AUC from the full sample (Extended Fig. 6). The 
correlation on echocardiographic labels during zero-shot 

Fig. 4  Average AUC for five 
echocardiographic labels under 
varying sample sizes using linear 
probing for PASTER, BioViL-
T, MedCLIP, DenseNet, and 
ViT. Models were trained with 
increasing numbers of samples, 
and average AUC values were 
computed across five echocardio-
graphic labels

 

Fig. 5  Ablation study comparing architectural components and train-
ing strategies based on model variants of PASTER. The variants 
include combinations of different image and text encoders, loss func-
tions, and training procedures. The results are shown as the median and 

interquartile range (IQR) of AUC differences at two settings: n = 128 
cases (384 controls) and full data. Darker background colors indicate 
larger AUC differences
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We conducted ablation studies to understand the effects 
of different components and settings on the performance 
of PASTER. Supplementary Data 5 presents the results of 
using the PASTER technique with linear probing and full-
parameter fine-tuning. The results are shown in Fig. 5. In 
small-sample learning, hyperparameter tuning was crucial, 
with default hyperparameters resulting in a median AUC 
decrease of 5.7–7.6% across both test sets and label types. 
When full samples were used, hyperparameter tuning was 
less critical. Furthermore, we chose models based on the 
zero-shot AUC from the validation set rather than valida-
tion loss (details in Extended Fig.  8). Selecting models 
based on the zero-shot AUC from the validation set instead 
of validation loss led to a median AUC decrease of 1.1–
2.5%. Replacing the image encoder from ViT to DenseNet 

PASTER was trained with only 16 cases and 48 controls 
for linear probing, the correlations significantly increased 
to above 0.96. Extended Fig. 6B explains this phenomenon, 
taking left ventricular dysfunction (LVD) as an example. 
LVD is considered challenging for radiologists to identify 
directly from CXR [29]. Therefore, the zero-shot prediction 
of PASTER was inaccurate. However, using CXR to predict 
LVD actually yielded the highest ultimate AUC among all 
the echocardiographic labels (0.907/0.901 in the internal/
external test set). Small-sample learning using only 16 cases 
and 48 controls can effectively reveal potential correlations 
in such cases. Confusion matrices for the five echocardio-
graphic labels are presented in Extended Fig. 7, highlighting 
the classification performance of PASTER across the inter-
nal and external test sets.

Fig. 6  Comparison of PASTER on public datasets (CheXpert [20] and 
ChestX-ray14 [21]) using UMAP visualization and AUC comparisons. 
(A) UMAP visualizations of image embeddings from PASTER. Each 
subplot shows samples from the specified dataset (green or brown), 
with other datasets shown in gray, including the private dataset. (B) 

Average AUC for five labels in the CheXpert dataset under varying 
training sample sizes. (C) Average AUC for eight labels in the ChestX-
ray14 dataset under varying training sample sizes. The black diamonds 
and dashed lines indicate the benchmark results. PASTER, BioViL-T, 
and MedCLIP are shown for comparison [18, 27]
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were used. Notably, compared with PASTER (direct pre-
diction), PASTER (128 + 384) performed better on ChestX-
ray14. Detailed comparisons of each label are presented in 
Supplementary Data 10.

Table  5 shows the quantitative results of cross-modal 
retrieval. PASTER substantially outperformed both Med-
CLIP and BioViL-T in all the retrieval settings. On the inter-
nal test set, PASTER achieved a Recall@1 of 0.096 and a 
Recall@5 of 0.242, compared with 0.001/0.005 for Med-
CLIP and 0.002/0.024 for BioViL-T. Similar trends were 
observed on the external test set, where PASTER reached 
0.113/0.262 for Recall@1 and Recall@5, while MedCLIP 
and BioViL-T remained below 0.02 in all the metrics. 
Extended Fig. 11 illustrates representative qualitative exam-
ples of the top-3 chest radiographs retrieved by PASTER for 
a given free-text report.

Discussion

PASTER achieved CNN-level accuracy with only 128 cases 
and 384 controls for linear probing. This highlights the 
strength of the model in low-data regimes and its potential 
value for real-world clinical settings where data collection 
is limited. Notably, even though the free-text reports of the 
pretraining dataset likely lacked descriptions of echocar-
diographic findings, the embeddings of CXRs extracted by 
PASTER still correlated strongly with these labels, high-
lighting its potential to transcend existing knowledge. We 
observed that PASTER’s embeddings, although trained 
on radiological reports, also performed well on echocar-
diographic prediction tasks, suggesting that the learned 
representations capture clinically relevant anatomical or 
pathological patterns beyond the original supervision scope. 
Ablation experiments indicated that the success of PASTER 
is due primarily to effective contrastive learning. Replacing 
the language encoder with an MLP using 31 labels yielded 
similar performance. However, substituting the vision 
encoder (ViT) with a CNN led to a significant decrease in 
the AUC, highlighting the importance of Transformer-based 
representations. All the pretraining models based on CLIP 
technology (PASTER, ConVIRT, and MedCLIP) outper-
formed the other models in terms of small-sample learning, 
as validated across different datasets. These results collec-
tively suggest that both architecture and pretraining strategy 
play crucial roles in enabling generalizable performance 
with minimal supervision.

In this study, pretrained models were applied to 
extremely small CXR datasets, and the results demonstrated 
that small-sample learning on local data could be beneficial, 
particularly as most radiology AI systems experience dimin-
ished performance during external validation [30]. We faced 

significantly decreased the AUC, whereas replacing the 
text encoder with a multilayer perceptron (MLP) slightly 
improved the radiological label accuracy but decreased 
echocardiographic label accuracy. Using structured labels 
for pretraining with the ViT trained by cross-entropy also 
reduced accuracy by more than 5%. Detailed comparisons 
are presented in Supplementary Data 6.

We applied PASTER to two publicly available datasets, 
CheXpert and ChestX-ray14, to evaluate their performance. 
The differences in the embeddings between the CXRs from 
CheXpert and ChestX-ray14 are shown in Fig. 6A. Addi-
tionally, we observed distinctions between our private data-
set and these two public datasets (further details in Extended 
Fig.  9). Supplementary Data 7 provides a detailed com-
parison of the AUC for each label and the mean AUC for 
PASTER, BioViL-T, SupCon, and MoCo-CXR on CheX-
pert. As shown in Fig.  6B, PASTER maintained superior 
performance across different sample sizes, performing 
similarly to ConVIRT [16] and significantly outperformed 
the series-analysis based BioViL-T, the supervised contras-
tive learning-based SupCon [26], and the image contrastive 
learning-based MoCo-CXR [28]. Supplementary Data 8 
provides a detailed comparison of the AUC for each label 
and mean AUC for PASTER, BioViL-T, MedCLIP, and the 
benchmark on ChestX-ray14. As shown in Fig. 6C, PASTER 
outperforms zero-shot predictions even when it is trained 
with only 128 cases and 384 controls and achieves further 
improvements when it is trained with 100% of the data 
[21]. Moreover, compared with MedCLIP, PASTER per-
formed similarly and significantly outperformed BioViL-T. 
Extended Fig. 10A presents a comparison between PASTER 
on CheXpert with the same sample size. We compared the 
performance of PASTER for different sample sizes, and as 
previously observed, we found that 128 cases and 384 con-
trols yield higher accuracy than the zero-shot predictions, 
although the accuracy slightly decrease when 100% of the 
samples are used. Notably, the model trained on the private 
dataset, referred to as “PASTER (direct predict)”, achieved 
a level of accuracy similar to that of PASTER (128 + 384). 
Detailed comparisons of each label are presented in Supple-
mentary Data 9. Extended Fig.  10B compared the results 
of PASTER on ChestX-ray14. We observed that compared 
with zero-shot predictions, PASTER achieved higher accu-
racy when 128 cases and 384 controls were used, and fur-
ther improvements were seen when 100% of the samples 

Table 5  Quantitative and qualitative results of cross-modal retrieval
Model Internal test set External test set

Recall@1 Recall@5 Recall@1 Recall@5
PASTER 0.096 0.242 0.113 0.262
MedCLIP 0.001 0.005 0.001 0.005
BioViL-T 0.002 0.024 0.005 0.019
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approaches [16, 18, 28, 36]. However, in our private data-
set, the cross-modal retrieval results showed that MedCLIP 
performed worse than expected, possibly because the style 
of the CXR reports differed from those used in its training. 
This cross-dataset comparison suggests that PASTER may 
retain its performance across datasets, indicating potential 
robustness for clinical deployment in diverse settings. Con-
sidering our findings and the limited effectiveness of pre-
training on general images for medical image analysis [16], 
as well as the privacy concerns associated with medical data 
[37], we suggest the need for a multinational, multicenter 
federated learning pre-training initiative using CXR and its 
reports to enhance CXR analysis.

AI models like PASTER have the potential to enhance 
scientific research by identifying previously underexplored 
correlations in CXR data [23]. Despite the systematic 
approaches used by radiologists, significant knowledge 
gaps remain, and several studies have reported that AI 
models can outperform radiologists in specific diagnostic 
tasks [38, 39]. High-quality annotations of CXR images 
can reveal unexpected applications, such as supporting 
the detection of heart failure, which can be challenging for 
radiologists [29, 40–42]. PASTER achieved high accuracy 
for diseases not described in CXR reports, suggesting its 
potential for further exploration of related CXR conditions. 
This could lead to “opportunistic screening” [43], predict-
ing extensive nonadaptive disease risks from a single CXR, 
similar to the incidental findings in radiology [44]. PASTER 
could expand clinical indications beyond the current scope 
of CXR by addressing certain diagnostic gaps.

This study has several limitations. The pretraining 
dataset included only Taiwanese individuals, but further 
analysis on public datasets provided supportive evidence 
of performance on other populations. Owing to limited 
computational resources, we could not conduct extensive 
hyperparameter searches for CNN and ViT. PASTER was 
trained only on frontal CXRs, resulting in somewhat lower 
performance on datasets including lateral CXRs, such as 
CheXpert. The absence of multiple radiologists’ collective 
annotations may introduce bias [8], although echocardio-
graphic labels were treated as reference standards [7]. In 
addition, this study did not include retrieval-based or simi-
larity-based downstream tasks. The probing results provide 
indirect evidence of semantic alignment but do not directly 
measure cross-modal retrieval ability. Future work could 
address these limitations by incorporating multi-institu-
tional datasets, exploring federated learning strategies, 
validating multiview radiographs with broader label con-
sensus, and expanding evaluation to include retrieval-based 
and interpretability analyses.

similar challenges when we applied the model trained on 
our private dataset to CheXpert and ChestX-ray14. Previous 
research emphasized simpler “homegrown” models [31], 
making it more feasible to collect a few hundred samples for 
retraining with PASTER compared to the 20,000 samples 
required for CNN retraining in earlier studies [32]. These 
findings imply that the lightweight adaptation of pretrained 
multimodal models may offer a more scalable and acces-
sible alternative for many institutions.

Zero-shot prediction contrasts with small sample-learn-
ing, as it requires no additional samples. However, our 
research revealed that PASTER, using a few dozen train-
ing samples for linear probing can be more accurate than 
zero-shot prediction while requiring substantially fewer 
samples than the hundreds typically reported in regulatory 
guidance for clinical validation [19]. Similarly, the results 
from MedCLIP and BioVi-T also revealed the importance of 
a few dozen training samples. Previous studies with general 
images also supported small-sample learning over zero-shot 
prediction [15]. Moreover, zero-shot prediction in medicine 
has several limitations: It struggles to predict pathologies 
not described in reports and still needs annotated samples 
to determine condition-specific probability thresholds [33]. 
Applying PASTER to zero-shot prediction for echocardio-
gram-related diseases resulted in significantly worse accu-
racy than ultimate the results. Therefore, in the context of 
medical imaging, particularly CXRs, our findings suggest 
prioritizing small-sample learning over zero-shot inference 
for practical and regulatory considerations.

PASTER demonstrated clear advantages over CNNs in 
small-sample learning and maintained better accuracy at the 
million-level training size, likely because of its well-trained 
Transformer using contrastive learning [24]. Training ViT 
for each label with the entire dataset yielded results inferior 
to those of CNNs, likely reflecting the limited availability of 
medical imaging data. Previous studies have shown that ViT 
requires more than 100 million samples to surpass CNNs 
[25, 34]. Notably, replacing PASTER’s ViT with a CNN 
reduced accuracy, suggesting the effectiveness of ViT-based 
representations. Compared with direct linear probing, full 
fine-tuning did not yield better results, indicating the robust-
ness of PASTER with smaller training sizes [35].

Pretraining with CLIP technology outperforms other 
models, leveraging free-text reports for higher accuracy 
[16]. SupCon [26], which uses limited structured labels, 
performed slightly worse. Both MedCLIP and ConVIRT, 
which adopt similar vision-language contrastive pretrain-
ing strategies, achieved comparable performance and con-
sistently outperformed SupCon and MoCo-CXR, which 
rely on structured labels or image-only contrastive learning 
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