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Abstract

While deep convolutional neural networks (DCNN5s) have achieved remarkable performance in chest X-ray interpretation,
their success typically depends on access to large-scale, expertly annotated datasets. However, collecting such data in
real-world clinical settings can be difficult because of limited labeling resources, privacy concerns, and patient variability.
In this study, we applied a multimodal Transformer pretrained on free-text reports and their paired CXRs to evaluate the
effectiveness of this method in settings with limited labeled data. Our dataset consisted of more than 1 million CXRs,
each accompanied by reports from board-certified radiologists and 31 structured labels. The results indicated that a linear
model trained on embeddings from the pretrained model achieved AUCs of 0.907 and 0.903 on internal and external test
sets, respectively, using only 128 cases and 384 controls; the results were comparable those of DenseNet trained on the
entire dataset, whose AUCs were 0.908 and 0.903, respectively. Additionally, we demonstrated similar results by extend-
ing the application of this approach to a subset annotated with structured echocardiographic reports. Furthermore, this
multimodal model exhibited excellent small sample learning capabilities when tested on external validation sets such as
CheXpert and ChestX-ray14. This research significantly reduces the sample size necessary for future artificial intelligence
advancements in CXR interpretation.

Keywords Multimodal learning - Chest radiograph - Few-shot prediction - Small sample training - Foundation model -
Transformer - Deep learning

Introduction well-annotated datasets significantly constrains supervised
deep learning for medical image tasks [9, 10]. This limi-
tation is particularly pronounced in real-world clinical set-

tings, where data access, privacy concerns, and resource

Chest X-rays (CXRs) are a commonly used imaging tech-
nique, with at least 2 billion global annual instances [1].

There is significant interest in the development of CXR
analysis technology [2]. Deep learning techniques, par-
ticularly convolutional neural networks (CNNs) [3], have
been found to achieve expert-level performance in interpret-
ing medical images [4-6]. However, the success of these
models heavily relies on substantial volumes of data and
high-quality annotations, which often require collaboration
among multiple experts [7, 8]. The current lack of large,
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constraints hinder large-scale annotation efforts. The devel-
opment of approaches to reduce this reliance on large-scale
datasets with structured annotations is critical.

Transfer learning with pretrained models is a primary
method for enhancing performance with limited samples
and has gained widespread acceptance for medical image
analysis processes [11]. In image classification tasks, several
unsupervised pretrained algorithms exist [12—14]. Recently,
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a multimodal model called contrastive language-image pre-
training (CLIP), which is trained with text-and-image pairs,
has demonstrated superior accuracy in downstream tasks
[15]. In the medical field, especially for CXRs, electronic
health records often include corresponding reports writ-
ten by radiologists, making it feasible to adopt CLIP-like
approaches for CXR analysis. Models such as ConVIRT,
BioMedCLIP, and MedCLIP have used to apply similar
techniques in this context, although most have been evalu-
ated in large-scale or zero-shot scenarios [16—18]. While
zero-shot prediction is quite convenient in applications, the
CLIP model with linear probing, which uses more than 4
labeled training examples per class, surpasses the accuracy
of zero-shot prediction [15]. Despite this progress, a gap
remains in understanding how such models perform in gen-
uinely small-sample regimes where data availability falls
far short of the traditional supervised learning thresholds.
However, for clinical validation and FDA approval, Al mod-
els require a minimum of several hundred samples for each
specific indication [19]. Thus, it is essential to explore small
sample learning using the CLIP model for CXR analysis.
Large-scale studies show promise in using multimodal
models such as CLIP for CXR analysis, but small sample
learning remains underexplored. Current research focuses
on large datasets and lacks the benefits of smaller, man-
ageable datasets. No comprehensive studies have evaluated
pretrained multimodal models with small sample sizes for
CXRs. While existing works have demonstrated strong
zero-shot performances, little attention has been given to

(A) Pre-train a model using CXRs and free-text report pairs
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evaluating such models under constrained supervision. In
this study, we address this gap by proposing and evaluat-
ing the pretraining approach for small-sample training
employing radiographs (PASTER), which combines con-
trastive vision-language pretraining with linear probing
to enable accurate CXR interpretation from limited data.
We compare PASTER with traditional CNNs across vari-
ous sample sizes, highlighting its potential for high accu-
racy with minimal data. The PASTER workflow is shown
in Fig. 1: starting with contrastive learning using free-text
reports and chest radiographs (Fig. 1A), the vision Trans-
former then extracts features from a limited sample pool,
followed by a logistic regression analysis (Fig. 1B). Using
only 128 cases with 384 controls achieved a highly satis-
factory performance.

The main methodological contributions of this study are
as follows:

1. We propose PASTER, a multimodal contrastive pre-
training framework tailored for small-sample chest
X-ray interpretation.

2. We evaluate its performance across varying dataset
sizes and show that it achieves an accuracy comparable
to that of fully supervised CNNs using only a fraction of
the data.

3. We adopt linear probing as a lightweight adaptation
method and demonstrate its effectiveness in lever-
aging pretrained representations under constrained
supervision.

(B) Small sample learning using image embeddings from pre-trained model
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sample pool, followed by logistic regression with regularization.
Using 128 cases and 384 controls achieved satisfactory performance
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Materials and methods
Datasets

This algorithm development study was based on data from
the Tri-Service General Hospital in Taiwan to develop a
deep learning model (DLM). The study was approved by
the Institutional Review Board of the Tri-Service Gen-
eral Hospital, National Defense Medical Center (IRB NO.
C20230519), in accordance with the Declaration of Hel-
sinki. All the data were obtained from the hospital’s qual-
ity control center, were fully anonymized prior to analysis,
and were exempt from informed consent as approved by
the IRB. Tri-Service General Hospital provided a private
database of 1,105,436 AP or PA viewed CXRs from Janu-
ary 1, 2011, to February 28, 2022. The training set included
1,004,314 CXRs paired with radiological reports and anno-
tated with 31 radiological labels. To prevent cross-contam-
ination, a strict dataset split strategy was applied (Fig. 2).
We subsampled the training set into five sizes: 2,000
(0.2%), 10,000 (1.0%), 50,000 (5.0%), 200,000 (20.0%),
and 1,004,314 (100.0%). The internal and external test
sets from hospitals A and B contained 101,122 and 81,614
CXRs, respectively. To avoid sample interdependence, only
one CXR was used for each patient. The training dataset

368,301 patients had at least one chest radiographs
(CXRs) with reports of board-certified radiologists in
hospital A (academic medical center)

Randomization by patients

included more than one million CXRs from two hospitals.
The average ages in the training, internal test, and external
test sets were 58.0+21.2,48.1+£21.0, and 51.6+21.3 years,
respectively, with male percentages of 55.1%, 51.6%, and
50.5%, respectively. The detailed patient characteristics
and dataset distributions are shown in Table 1 and Extended
Data Table 1. For a subset with echocardiographic labels,
details are provided in Table 2 and Extended Data Table 2.

The CheXpert dataset, consisting of 224,316 CXRs
from 65,240 patients at Stanford Hospital, was used to
evaluate small-sample learning [20]. Only frontal CXRs
were included, resulting in a training set of 191,027 CXRs.
The dataset is labeled for 14 conditions, with a focus on
five conditions: atelectasis, cardiomegaly, consolidation,
edema, and pleural effusion. The test set included 668
CXRs from 500 patients. The distribution details are pro-
vided in Table 3.

The ChestX-ray14 dataset from the NIH Clinical Center
includes 112,120 frontal CXRs from 30,805 patients [21].
The training set included 86,524 CXRs, and the test set
included 25,596 CXRs. We selected eight labels for cross-
database performance assessment: atelectasis, cardiomeg-
aly, consolidation, edema, pleural effusion, emphysema,
pneumonia, and pneumothorax. Detailed distribution infor-
mation is available in Table 4.

81,614 patients had at least one chest radiographs
(CXRs) with reports of board-certified radiologists in
f { y hosp

1

267,179 patients |

101,122 patients

¥

Used all CXRs

¥

Selected at random Selected at random

|

Training set
1,004,314 CXRs with radiological labels

Internal test set
101,122 CXRs with radiological labels

External test set
81,614 CXRs with radiological labels

Using full sample to pre-train a
multimodal transformer

Sampling different size for
training a series of models:

v 0.2%: 2,000 CXRs

v 1.0%: 10,000 CXRs

v 5.0%: 50,000 CXRs

v 20.0%: 200,000 CXRs

v 100.0%: 1,004,314 CXRs

Using full sample to evaluate
performance of each model.

Sub-training set
150,911 CXRs with echocardiographic reports within 7 days

y
Sub-internal test set
10,318 CXRs with echocardiographic reports within 7 days

Sub-external test set

8,861 CXRs with echocardiographic reports within 7 days

Sampling different size for
training a series of models:

¥ 0.2%: 293 CXRs

v 1.0%: 1,465 CXRs

v 5.0%: 7,455 CXRs

v 20.0%: 30,178 CXRs
¥ 100.0%: 150,911 CXRs

Fig. 2 Dataset creation and analysis strategy. Schematic ensuring robust training and testing by using patient data in only one set to avoid

cross-contamination
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Table 1 Distribution of structured radiological labels in the private

Table 2 Distribution of structured echocardiographic labels in the pri-

dataset vate dataset
Training set Internal test set External test Training set Internal test ~ External test
set set set

Radiological n=1,004,314 n=101,122 n=81,614 Echocardiographic n=150,911 n=10,318 n=8861
labelsT labelst
Consolidation 77,119(7.7%) 2332(2.3%) 1836(2.2%) Left ventricular 11,637(7.7%) 377(3.7%) 268(3.0%)
change dysfunction
Pneumonia 22,606(2.3%) 798(0.8%) 550(0.7%) Aortic stenosis 2255(1.5%) 93(0.9%) 95(1.1%)
Emphysematous  21,163(2.1%) 1011(1.0%) 1114(1.4%) Pulmonary arterial  18,729(12.4%) 681(6.6%) 621(7.0%)
change hypertension
Pneumothorax 13,346(1.3%) 399(0.4%) 282(0.3%) Left atrial 29,644(19.6%) 1383(13.4%) 1319(14.9%)
Atelectasis 34,101(3.4%) 1060(1.0%) 839(1.0%) enlargement
Scalloping of 22,45922%)  1812(1.8%)  1877(2.3%) Pericardial effusion  2312(1.5%) 81(0.8%) 58(0.7%)
the diaphragm 1These abnormal echocardiographic findings were extracted from
Costophrenic 437,443(43.6%) 22,638(22.4%) 19,899(24.4%) structured cardiac ultrasound reports obtained within £7 days of
angle blunting examination. Notably, the board-certified radiologists composing the
Pleural effusion  237,838(23.7%) 8727(8.6%) 7856(9.6%) free;-text reports did not have access to these speciﬁc. results during
Atherosclerosis  505,309(50.3%) 32,690(32.3%) 31,520(38.6%) their reporting process. The de.:ﬁmtlons for these ﬁndmgs. are as fol-

. lows: left ventricular dysfunction, defined as a left ventricular ejec-
Cardiomegaly ~ 292,483(29.1%) 14,379(14.2%) 12,688(15.5%) tion fraction<35%; aortic stenosis, defined as moderate [jet velocity
Prominence of  164,002(16.3%) 7010(6.9%) 5868(7.2%) 3.0-4.0 m/s, mean gradient of 20-49 mmHg, or an aortic valve area

hilar shadow

Pulmonary 53,235(5.3%) 1281(1.3%) 1054(1.3%)
edema

Aneurysm 1787(0.2%) 64(0.1%) 53(0.1%)
Degenerative 452,835(45.1%) 29,814(29.5%) 28,911(35.4%)
joint disease

Fracture 104,228(10.4%) 5236(5.2%) 4617(5.7%)
Spondylosis 299,812(29.9%) 16,830(16.6%) 16,652(20.4%)
Osteophyte 393,814(39.2%) 24,844(24.6%) 23,886(29.3%)
formation

Osteoporosis 98,472(9.8%) 4735(4.7%) 5152(6.3%)
Osteoarthritis 228,868(22.8%) 12,197(12.1%) 11,597(14.2%)
Widening of the 185,558(18.5%) 9540(9.4%)  9083(11.1%)
mediastinum

Malignancy 20,088(2.0%) 721(0.7%) 543(0.7%)
Inflammatory 326,035(32.5%) 15,823(15.6%) 14,017(17.2%)
Pigtail or 41,408(4.1%) 942(0.9%) 591(0.7%)
drainage

Sternotomy 55,352(5.5%) 1174(1.2%) 1252(1.5%)
Port A 72,678(7.2%) 2101(2.1%) 1714(2.1%)
implantation

Perm catheter 33,975(3.4%) 734(0.7%) 584(0.7%)
insertion

Pacemaker 15,128(1.5%) 480(0.5%) 523(0.6%)
Tracheostomy 53,939(5.4%) 633(0.6%) 723(0.9%)
Vertebroplasty 12,062(1.2%) 436(0.4%) 423(0.5%)
Endotracheal 94,500(9.4%) 2153(2.1%) 1110(1.4%)
tube

Nasogastric 192,923(19.2%) 4382(4.3%) 3044(3.7%)
tube

tThese structured radiological labels were preselected by each
board-certified radiologist when free-text reports were composed. In
theory, the content of the free-text reports is expected to encompass
these labels, but they may also include free-text descriptions beyond
the scope of these labels
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of 1.1-1.5 cm?] to severe [jet velocity>4.0 m/s, mean gradient>40
mmHg, a dimensionless velocity index (DVI) of <0.25, or an AVA of
<1.0 cm?]; (3) pulmonary arterial hypertension, defined as a systolic
pulmonary artery pressure>50 mmHg (peak tricuspid regurgitation
velocity>3.4 m/s); (4) left atrial enlargement, defined as a left atrial
diameter>45 mm; and (5) pericardial effusion, defined as an effu-
sion>1 cm. Left ventricular dysfunction [41] is considered challenging
for radiologists to identify directly, despite prior deep learning research
confirming the potential existence of subtle signs in CXR. Aortic ste-
nosis [42], pulmonary arterial hypertension [43], left atrial enlargement
[44], and pericardial effusion [45] are also difficult to interpret directly
but can be indirectly inferred by radiologists through other features

Table 3 Distribution of structured labels in the chexpert dataset

Training set Validation set ~ Test set
CheXpert labels #n=191,027 n=202 n=500
Atelectasis 112,217(58.7%)  75(37.1%) 153(30.6%)
Cardiomegaly 111,420(58.3%)  66(32.7%) 151(30.2%)
Consolidation 98,094(51.4%)  32(15.8%) 29(5.8%)
Edema 88,580(46.4%)  42(20.8%) 78(15.6%)
Pleural Effusion 93,189(48.8%)  64(31.7%) 104(20.8%)

Table 4 Distribution of structured labels in the ChestX-ray14 dataset

Training set Test set

ChestX-ray14 labels n=86,524 n=25,596

Atelectasis 8280(9.6%) 3255(12.7%)
Cardiomegaly 1707(2.0%) 1065(4.2%)
Consolidation 2852(3.3%) 1815(7.1%)
Edema 1378(1.6%) 925(3.6%)
Pleural Effusion 8659(10.0%) 4648(18.2%)
Pneumothorax 2637(3.0%) 2661(10.4%)
Pneumonia 876(1.0%) 477(1.9%)
Emphysema 1423(1.6%) 1093(4.3%)
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Foundation Model Pre-training

PASTER was developed using OpenAl’s CLIP model,
which incorporates an image encoder and a text encoder
[15]. The image encoder uses the ViT-B/32 architecture,
which is designed to process 256 x 256-sized images. Input
images were initially divided into 32x32-sized image
patches, which were then processed through 12 Trans-
former layers with a hidden size of 768, producing a com-
pressed output as a 512-dimensional vector for each patch.
The text encoder was a standard language Transformer with
512 token embeddings, a maximum token length of 256, 12
layers, a hidden size of 512, and 8§ attention heads. Before
the images and text were input into their respective encod-
ers, an additional [CLS] token was added, and the output
from the [CLS] token was used as an embedding for both
the CXR and the report. During backpropagation, the inner
product between these two embeddings was calculated, and
the error was passed through softmax and cross-entropy loss
for optimization. A schematic pseudocode illustrating the
contrastive pretraining procedure is provided in Extended
Fig. 1 [15].

All the technical details closely adhered to OpenAl’s
CLIP model, and the weights of this model were used as the
initialization parameters [15]. During pretraining, we ran-
domly split 1,004,314 CXRs from the Tri-Service General
Hospital database into 90% for model fitting and 10% for
validation. All network parameters were fine-tuned using
the standard parameters of an SGD optimizer, with a batch
size of 64, a learning rate of 0.0001, and a momentum of
0.9. Throughout the training, the images were randomly
cropped to a size of 256 x 256 pixels. The model was trained
for 50 epochs, with the validation loss computed at the end
of each epoch to select the best-performing model. Model
training was conducted in a Python environment, version
3.10.10, utilizing the “torch” package version 2.0.1.

Linear Probing

We conducted linear probing of CXR embeddings using the
“glmnet” package version 2.0-16 in R software 3.4.4. This
package uses the elastic net algorithm, which includes both
L1 and L2 regularization terms within logistic regression.
For each task, we oversampled the samples to ensure an
equal number of cases and controls. Afterward, we divided
the samples into four subsets for cross-validation, utiliz-
ing the “cv.glmnet” function. During cross-validation, we
searched for the optimal values of lambda (the regulariza-
tion hyperparameter) in the range from ¢ to ¢! (a loga-
rithmically spaced sequence of length 45) and alpha (the
ratio of L1 and L2 penalties) in the range from 0 to 1 (with
increments of 0.1), aiming to maximize the cross-validation

AUC. The selected model fit by the hyperparameter with
the highest cross-validation AUC was subsequently applied
directly to the test set. More details can be found in the code
availability section. Note that owing to the high sensitiv-
ity of small sample training to random sample selection, all
model fittings using linear probing were repeated 21 times.
The results were then determined on the basis of the median
accuracy across these 21 models.

Zero-shot Prediction

We conducted zero-shot experiments on each dataset
using the labels in its test set to generate “< label>" and
“no<label>” prompts for the softmax evaluation process.

Convolutional Neural Network

We used a 121-layer DenseNet architecture [22] to adapt to
the training methodology for CXR from our previous study
[23]. Our approach began with pretraining DenseNet on the
ImageNet dataset. The parameters for each CXR network
were initialized using parameters from the pretrained net-
work of the ImageNet dataset. We updated the parameters
of the DLMs to minimize cross-entropy losses, incorporat-
ing an oversampling technique based on class weights com-
puted from the prevalence of each class in the training set.
Because we initially attempted to train a single network for
all labels but found that the accuracy was not satisfactory,
we ultimately opted to train a separate network for each
label.

During training, 90% of each subset was used for model
fitting, and 10% was used for validation. This procedure
was applied to all the datasets. For Tri-Service General
Hospital, we used five training proportions, namely, 0.2%,
1.0%, 5.0%, 20.0% and 100.0%. For CheXpert and ChestX-
ray14, we used three proportions, which were 1.0%, 10.0%
and 100.0%. All network parameters were fine-tuned using
the Adam optimizer with standard parameters, utilizing a
batch size of 32 and an initial learning rate of 0.001. We
reduced the learning rate by a factor of 10 whenever the val-
idation loss plateaued after an epoch. To prevent overfitting,
we implemented early stopping by saving the network after
each epoch and selecting the saved network with the highest
validation AUC. During training, we used random cropping
of a 224 x224-pixel region as input, with a 50% chance of
applying a random horizontal flip. In the inference stage, we
employed a 10-crop evaluation method to generate 10 prob-
abilities for each CXR, and the final prediction was based on
the average of these 10 probabilities.

The networks were trained for more than 50 epochs:
including more than 30 epochs at a learning rate of 0.001
(Stage 1), more than 10 epochs at a learning rate of 0.0001

@ Springer
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(Stage 2), and more than 10 epochs at a learning rate of
0.00001 (Stage 3). In most cases, the model with the highest
AUC on the tuning subset was often found in Stages 2 and
3. The sole regularization technique used to prevent overfit-
ting was a weight decay of 10™* in this study. Model training
was conducted using the R version 3.4.4 software environ-
ment with the “MXNet” package version 1.3.0.

Vision Transformer

Owing to prior research highlighting the advantages of
vision Transformers (ViT) over convolutional neural net-
works in medical image analysis [24], we also trained a
series of models based on the ViT-B/32 [25] architecture for
comparison. Like in our CNNs experiments, we trained sep-
arate ViTs for each label and initialized the model weights
using checkpoints pretrained on the ImageNet dataset. Dur-
ing training, 90% of each database subset was used for
model fitting, and 10% was used for validation. We selected
the model with the highest validation AUC for evaluation
on the test set. Furthermore, we followed training details
similar to those of the original ViT [25], including the use
of the SGD optimizer with hyperparameters set to a cosine
warmup learning rate starting from 3 x 107>, a momentum
of 0.9, a batch size of 64, and a total number of epochs of
50. During training, we randomly cropped a 256 x 256-pixel
region as input without applying horizontal flipping. In the
inference stage, we took the central 256 x 256-pixel region
as input. Model training was conducted in the Python ver-
sion 3.10.10 software environment, utilizing the “torch”
package version 2.0.1.

Models in Ablation Experiments

We sought to emphasize the importance of the hyperparame-
ter searching approach in linear probing. To do this, we used
the same PASTER model for extracting CXR embeddings
and kept lambda=0.001 and alpha=0 as fixed hyperparam-
eters in the elastic net algorithm for our initial experiment.
The training process of this model resembled that of ViT,
with the only difference being the weight initialization. The
criterion for selection was based on the average AUC calcu-
lated for 31 radiological labels at the end of each epoch. We
chose the epoch with the highest validation AUC for further
CXR embedding extraction.

Since the architecture of PASTER is based on Trans-
formers, and prior research has indicated that Transform-
ers outperform convolutional neural networks in medical
image analysis [24], we changed the image encoder of
PASTER. Instead of ViT/B-32, we replaced it with a 121-
layer DenseNet. Additionally, since an earlier study sug-
gested there are benefits in using structured labels for

@ Springer

supervised contrastive learning in small sample learning
[26], we attempted to modify the text encoder of PASTER.
We replaced it with a multilayer perceptron (MLP), which
takes 31 labels as input. The first hidden layer contains 512
neurons, and subsequently, each hidden layer maintains 512
neurons while incorporating the concept of residual learn-
ing to establish shortcuts between layers. After five hid-
den layers, the model directly outputs the results. Finally,
we compared our approach to a ViT trained for multilabel
training using cross-entropy loss with direct utilization of
31 structured labels. This ViT is a separate model, distinct
from the ViT trained individually for each label. We uti-
lized its final layer’s high-level features for linear probing
comparisons. All these additional models were trained with
identical hyperparameter settings, and we selected the one
with the lowest validation loss after each epoch for further
comparison.

We also compared the results obtained by initializing the
weights using PASTER and conducting full-parameter fine-
tuning. Since full-parameter fine-tuning is not suitable for
small sample learning, this experiment was conducted only
with sample sizes ranging from 0.2 to 100%.

Model Comparison

The proposed PASTER shares a similar training technique
with previous models such as ConVIRT, which was trained
on the publicly available MIMIC-CXR dataset. MedCLIP
also adopts a similar vision-language contrastive pretrain-
ing framework; however, since its training involved the
CheXpert dataset, we excluded it from CheXpert-related
evaluations to avoid potential data contamination [18]. In
addition to ConVIRT and MedCLIP, we also included other
pretrained models that use different techniques, such as Bio-
ViL-T, which is based on series-alignment techniques such
as those in the BioViL family; MoCo-CXR [27, 28], which
modifies the contrastive learning framework Momentum
Contrast (MoCo) for CXR interpretation; and SupCon [26],
a contrastive learning method based on structured labels
in CheXpert. Since ChestX-ray14 lacks results from small
sample training, we utilized fully supervised learning results
as a benchmark [21]. Given that these models do not have
publicly available checkpoints for direct comparison, we
extracted performance figures from published papers.

Cross-modal Retrieval

To evaluate the cross-modal retrieval capability of the pro-
posed model, we conducted retrieval experiments using
1,000 randomly selected radiology reports as queries. All
reports were sourced from private datasets (an internal test
set and external test set), each paired with a corresponding
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chest X-ray image. For each text query, the cosine simi-
larity between the encoded text representation and all the
image embeddings in the candidate pool was computed.
The retrieved images were ranked on the basis of similarity
scores. We reported Recall@1 and Recall@5, which mea-
sure the proportion of queries where the ground-truth image
appears in the top 1 or top 5 retrieved results, respectively.
All the retrieval experiments were conducted using fixed
pretrained encoders without further fine-tuning.

Statistical Analysis

We chose the AUC as the primary metric for evaluat-
ing model accuracy. AUC is calculated on the basis of the
receiver operating characteristic (ROC) curve, which com-
pares sensitivity and specificity at different thresholds. Since
all the datasets in this study are multilabel, and direct aver-
aging does not align with a clinical perspective, our primary
model performance comparison involved calculating AUC
differences for each label between the two models. We pres-
ent these differences as medians (interquartile ranges, IQRs)
and illustrate the percentage of cases where the difference is
>0 (indicating that the first model outperforms the second).
Additionally, in the supplementary appendix, we provided
accuracy comparisons for each label, including mean AUC
comparisons. To assess model classification performance,
we visualized confusion matrices for key radiological and
echocardiographic labels, using rowwise normalized per-
centages to highlight sensitivity and specificity across inter-
nal and external test sets.

We employed a nonparametric bootstrap approach to
generate these confidence intervals (CIs). Specifically, we
repeatedly sampled random subsets of size n (matching the
number of samples in the internal test set) from the origi-
nal dataset, with replacement, for a total of 1,000 iterations.
AUC values or differences were estimated for each of these
bootstrap samples. The ClIs were derived from the relative
frequency distribution of these estimates across the resam-
ples. We calculated the interval between the 100x(0/2) and
100 x (1 —0/2) percentiles, with a set to 0.05. For AUC dif-
ferences, we also examined how many values in the same
bootstrap distribution were more extreme than 0 to calcu-
late a one-tailed p value. Finally, we presented the results as
two-tailed p values for all the statistical tests.

We also assessed the correlation between the AUC
obtained with different sample sizes and the AUC from
the full sample using Pearson correlation coefficients. The
specific approach involved using the AUC obtained during
small sample learning as the input and the AUC from the
full sample as the output, with each data point represent-
ing the results for each label. Additionally, we performed a
linear regression, which can be used by future researchers to

predict the ultimate accuracy of a task with a limited sample
size.

To visualize the differences between different datasets,
we extracted CXR embeddings using PASTER, and then
reduced the original 512-dimensional vectors to 2 dimen-
sions using the uniform manifold approximation and pro-
jection (UMAP) technique. It is essential to emphasize that
this visualization method relies on highly nonlinear axes,
rendering the assignment of interpretable units to either axis
impossible. This analysis was performed using the “umap-
learn” package version 0.5.5 in Python version 3.10.10 with
default parameters.

Results

Supplementary Data 1 compares PASTER, DenseNet (a
CNN), and the vision Transformer in terms of the AUC for
all 31 radiological labels and the mean AUC. We initially
explored the most suitable ratio of cases (with <label>) to
controls (without <label>) for small sample learning. It is
widely known that the optimal ratio is 1:1, but owing to
the often limited number of cases, we attempted to increase
the number of controls to enhance model performance.
Detailed results for different numbers of cases are presented
in Extended Fig. 2. We observed that the ratio of controls to
cases reached the highest mean AUC (0.865/0.862 in inter-
nal/external test sets) when it was 3, with further increases in
the number of control samples showing diminishing returns.
We also provided results for cases with a count of 128, and
similarly, we found that the efficiency decreased beyond a
control-to-case ratio of 3. Therefore, for subsequent small
sample learning experiments, we fixed the ratio of cases to
controls at 1:3.

The average results are summarized in Fig. 3. PASTER
achieved average AUCs of 0.907 and 0.903 on the inter-
nal and external test sets, respectively, when only 128 cases
and 384 controls were used, closely matching DenseNet’s
performance with the full dataset (n=1,004,314). PASTER
also outperformed ViT, which achieved average AUCs of
0.890 and 0.885 on the internal and external test sets, respec-
tively. PASTER consistently outperformed DenseNet, even
with larger training samples. MedCLIP achieved AUCs
of 0.901 on the internal test set and 0.903 on the external
test set, whereas BioViL-T showed lower performance,
with AUCs of 0.859 on the internal test set and 0.861 on
the external test set. Compared with both MedCLIP and
BioViL-T, PASTER demonstrated superior performance
across all the evaluations. Extended Fig. 3A shows the
AUC differences between PASTER and DenseNet under
the same sample sizes. Compared with DenseNet, PAS-
TER achieves median AUC differences of 15.6%/14.2%,
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8.4%/7.0%, 7.1%/6.9%, 4.3%/4.5%, and 1.0%/0.9% in
the internal/external test sets for training samples of 0.2%,
1%, 5%, 20%, and 100%, respectively. The results show
that PASTER outperforms DenseNet on all radiological
labels when the number of training samples is less than
200,000. Importantly, even when 100% of the samples
were used, compared with DenseNet, PASTER maintained
an advantage in 87.1%/83.9% of the radiological labels in
the internal/external test sets. Extended Fig. 3B illustrates
the comparison between PASTER using only 128 cases
and 384 controls and DenseNet (20%), DenseNet (100%),
and PASTER (100%). We observed that the performance
of PASTER in small-sample learning closely matches that
of DenseNet (100%), with only a slight difference (0.2%)
in the median AUC difference. Furthermore, PASTER out-
performs DenseNet (20%) significantly. Finally, when full
samples were used for linear probing, PASTER performs
better than small sample learning across all radiological
labels did, albeit with minimal differences (median [inter-
nal]: —1.4% [IQR: —2.2%, —0.8%] and median [external]:
—1.4% [IQR: —1.9%, —0.7%]). More detailed comparisons
are presented in Supplementary Data 2. PASTER performs
worse in zero-shot prediction than in small-sample learning
for most labels. Confusion matrices for each radiological
label are presented in Extended Fig. 2 to visualize classifica-
tion patterns across internal and external test sets.

We further explored the performance of PASTER on five
echocardiographic labels. Supplementary Data 3 provides
a detailed comparison of PASTER, MedCLIP, BioViL-T,
DenseNet, and ViT for each label’s AUC and mean AUC,
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Sample size in training stage (n. case + n. control)

BioViL-T (case:control = 1:3)-# MedCLIP (case:control = 1:3)-# DenseNet (original ratio)
BioViL-T (original ratio)

#-MedCLIP (original ratio) # ViT (original ratio)

while Fig. 4 presents the average results. PASTER achieved
average AUCs of 0.840 and 0.842 on the internal and exter-
nal test sets, respectively, when only 128 cases and 384 con-
trols were used, which are close to DenseNet’s performance
with 100% of the samples (n=150,911), which achieved
AUCs of 0.838 and 0.852, respectively. MedCLIP achieved
higher AUCs of 0.885 on the internal test set and 0.883
on the external test set when it was trained with 100% of
the samples. However, PASTER consistently outperforms
MedCLIP under limited sample settings, demonstrating its
advantage in small-sample learning scenarios. The perfor-
mance of PASTER was evaluated using different sample
sizes to understand the impact of training sample size on
model performance. Extended Fig. 5 illustrates the differ-
ences in the AUCs between PASTER and DenseNet for
the same sample sizes. We observe that the median AUC
differences on the 5 echocardiographic labels increase by
5.7%/4.0%, 3.6%/2.9%, and 2.0%/2.0% in the internal/
external test sets when 5%, 20%, and 100% of the train-
ing samples are used, respectively. When comparing PAS-
TER using only 128 cases and 384 controls with DenseNet
(20%), DenseNet (100%), and PASTER (100%), we note
that PASTER achieves AUC differences with median val-
ues slightly lower by 0.2% (internal) and 0.3% (external)
compared to DenseNet (100%). Similarly, PASTER out-
performs DenseNet (20%), and the use of full samples still
leads to improved accuracy for PASTER across all echocar-
diographic labels. More detailed comparisons are presented
in Supplementary Data 4. We further assessed the correla-
tion between the AUC obtained with different sample sizes
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and the AUC from the full sample (Extended Fig. 6). The
correlation on echocardiographic labels during zero-shot
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Fig. 6 Comparison of PASTER on public datasets (CheXpert [20] and
ChestX-ray14 [21]) using UMAP visualization and AUC comparisons.
(A) UMAP visualizations of image embeddings from PASTER. Each
subplot shows samples from the specified dataset (green or brown),
with other datasets shown in gray, including the private dataset. (B)

PASTER was trained with only 16 cases and 48 controls
for linear probing, the correlations significantly increased
to above 0.96. Extended Fig. 6B explains this phenomenon,
taking left ventricular dysfunction (LVD) as an example.
LVD is considered challenging for radiologists to identify
directly from CXR [29]. Therefore, the zero-shot prediction
of PASTER was inaccurate. However, using CXR to predict
LVD actually yielded the highest ultimate AUC among all
the echocardiographic labels (0.907/0.901 in the internal/
external test set). Small-sample learning using only 16 cases
and 48 controls can effectively reveal potential correlations
in such cases. Confusion matrices for the five echocardio-
graphic labels are presented in Extended Fig. 7, highlighting
the classification performance of PASTER across the inter-
nal and external test sets.
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Sample size in training stage
(n. case + n. control)

PASTER-# BioViL-T -= MedCLIP

Average AUC for five labels in the CheXpert dataset under varying
training sample sizes. (C) Average AUC for eight labels in the ChestX-
ray14 dataset under varying training sample sizes. The black diamonds
and dashed lines indicate the benchmark results. PASTER, BioViL-T,
and MedCLIP are shown for comparison [18, 27]

We conducted ablation studies to understand the effects
of different components and settings on the performance
of PASTER. Supplementary Data 5 presents the results of
using the PASTER technique with linear probing and full-
parameter fine-tuning. The results are shown in Fig. 5. In
small-sample learning, hyperparameter tuning was crucial,
with default hyperparameters resulting in a median AUC
decrease of 5.7-7.6% across both test sets and label types.
When full samples were used, hyperparameter tuning was
less critical. Furthermore, we chose models based on the
zero-shot AUC from the validation set rather than valida-
tion loss (details in Extended Fig. 8). Selecting models
based on the zero-shot AUC from the validation set instead
of validation loss led to a median AUC decrease of 1.1—
2.5%. Replacing the image encoder from ViT to DenseNet
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Table 5 Quantitative and qualitative results of cross-modal retrieval
Model

Internal test set External test set

Recall@]1 Recall@5 Recall@]1 Recall@5
PASTER 0.096 0.242 0.113 0.262
MedCLIP  0.001 0.005 0.001 0.005
BioViL-T ~ 0.002 0.024 0.005 0.019

significantly decreased the AUC, whereas replacing the
text encoder with a multilayer perceptron (MLP) slightly
improved the radiological label accuracy but decreased
echocardiographic label accuracy. Using structured labels
for pretraining with the ViT trained by cross-entropy also
reduced accuracy by more than 5%. Detailed comparisons
are presented in Supplementary Data 6.

We applied PASTER to two publicly available datasets,
CheXpert and ChestX-ray14, to evaluate their performance.
The differences in the embeddings between the CXRs from
CheXpert and ChestX-rayl4 are shown in Fig. 6A. Addi-
tionally, we observed distinctions between our private data-
set and these two public datasets (further details in Extended
Fig. 9). Supplementary Data 7 provides a detailed com-
parison of the AUC for each label and the mean AUC for
PASTER, BioViL-T, SupCon, and MoCo-CXR on CheX-
pert. As shown in Fig. 6B, PASTER maintained superior
performance across different sample sizes, performing
similarly to ConVIRT [16] and significantly outperformed
the series-analysis based BioViL-T, the supervised contras-
tive learning-based SupCon [26], and the image contrastive
learning-based MoCo-CXR [28]. Supplementary Data 8
provides a detailed comparison of the AUC for each label
and mean AUC for PASTER, BioViL-T, MedCLIP, and the
benchmark on ChestX-ray14. As shown in Fig. 6C, PASTER
outperforms zero-shot predictions even when it is trained
with only 128 cases and 384 controls and achieves further
improvements when it is trained with 100% of the data
[21]. Moreover, compared with MedCLIP, PASTER per-
formed similarly and significantly outperformed BioViL-T.
Extended Fig. 10A presents a comparison between PASTER
on CheXpert with the same sample size. We compared the
performance of PASTER for different sample sizes, and as
previously observed, we found that 128 cases and 384 con-
trols yield higher accuracy than the zero-shot predictions,
although the accuracy slightly decrease when 100% of the
samples are used. Notably, the model trained on the private
dataset, referred to as “PASTER (direct predict)”, achieved
a level of accuracy similar to that of PASTER (128+384).
Detailed comparisons of each label are presented in Supple-
mentary Data 9. Extended Fig. 10B compared the results
of PASTER on ChestX-rayl4. We observed that compared
with zero-shot predictions, PASTER achieved higher accu-
racy when 128 cases and 384 controls were used, and fur-
ther improvements were seen when 100% of the samples

were used. Notably, compared with PASTER (direct pre-
diction), PASTER (128 +384) performed better on ChestX-
rayl4. Detailed comparisons of each label are presented in
Supplementary Data 10.

Table 5 shows the quantitative results of cross-modal
retrieval. PASTER substantially outperformed both Med-
CLIP and BioViL-T in all the retrieval settings. On the inter-
nal test set, PASTER achieved a Recall@l1 of 0.096 and a
Recall@5 of 0.242, compared with 0.001/0.005 for Med-
CLIP and 0.002/0.024 for BioViL-T. Similar trends were
observed on the external test set, where PASTER reached
0.113/0.262 for Recall@1 and Recall@5, while MedCLIP
and BioViL-T remained below 0.02 in all the metrics.
Extended Fig. 11 illustrates representative qualitative exam-
ples of the top-3 chest radiographs retrieved by PASTER for
a given free-text report.

Discussion

PASTER achieved CNN-level accuracy with only 128 cases
and 384 controls for linear probing. This highlights the
strength of the model in low-data regimes and its potential
value for real-world clinical settings where data collection
is limited. Notably, even though the free-text reports of the
pretraining dataset likely lacked descriptions of echocar-
diographic findings, the embeddings of CXRs extracted by
PASTER still correlated strongly with these labels, high-
lighting its potential to transcend existing knowledge. We
observed that PASTER’s embeddings, although trained
on radiological reports, also performed well on echocar-
diographic prediction tasks, suggesting that the learned
representations capture clinically relevant anatomical or
pathological patterns beyond the original supervision scope.
Ablation experiments indicated that the success of PASTER
is due primarily to effective contrastive learning. Replacing
the language encoder with an MLP using 31 labels yielded
similar performance. However, substituting the vision
encoder (ViT) with a CNN led to a significant decrease in
the AUC, highlighting the importance of Transformer-based
representations. All the pretraining models based on CLIP
technology (PASTER, ConVIRT, and MedCLIP) outper-
formed the other models in terms of small-sample learning,
as validated across different datasets. These results collec-
tively suggest that both architecture and pretraining strategy
play crucial roles in enabling generalizable performance
with minimal supervision.

In this study, pretrained models were applied to
extremely small CXR datasets, and the results demonstrated
that small-sample learning on local data could be beneficial,
particularly as most radiology Al systems experience dimin-
ished performance during external validation [30]. We faced
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similar challenges when we applied the model trained on
our private dataset to CheXpert and ChestX-ray14. Previous
research emphasized simpler “homegrown” models [31],
making it more feasible to collect a few hundred samples for
retraining with PASTER compared to the 20,000 samples
required for CNN retraining in earlier studies [32]. These
findings imply that the lightweight adaptation of pretrained
multimodal models may offer a more scalable and acces-
sible alternative for many institutions.

Zero-shot prediction contrasts with small sample-learn-
ing, as it requires no additional samples. However, our
research revealed that PASTER, using a few dozen train-
ing samples for linear probing can be more accurate than
zero-shot prediction while requiring substantially fewer
samples than the hundreds typically reported in regulatory
guidance for clinical validation [19]. Similarly, the results
from MedCLIP and BioVi-T also revealed the importance of
a few dozen training samples. Previous studies with general
images also supported small-sample learning over zero-shot
prediction [15]. Moreover, zero-shot prediction in medicine
has several limitations: It struggles to predict pathologies
not described in reports and still needs annotated samples
to determine condition-specific probability thresholds [33].
Applying PASTER to zero-shot prediction for echocardio-
gram-related diseases resulted in significantly worse accu-
racy than ultimate the results. Therefore, in the context of
medical imaging, particularly CXRs, our findings suggest
prioritizing small-sample learning over zero-shot inference
for practical and regulatory considerations.

PASTER demonstrated clear advantages over CNNs in
small-sample learning and maintained better accuracy at the
million-level training size, likely because of its well-trained
Transformer using contrastive learning [24]. Training ViT
for each label with the entire dataset yielded results inferior
to those of CNN:gs, likely reflecting the limited availability of
medical imaging data. Previous studies have shown that ViT
requires more than 100 million samples to surpass CNNs
[25, 34]. Notably, replacing PASTER’s ViT with a CNN
reduced accuracy, suggesting the effectiveness of ViT-based
representations. Compared with direct linear probing, full
fine-tuning did not yield better results, indicating the robust-
ness of PASTER with smaller training sizes [35].

Pretraining with CLIP technology outperforms other
models, leveraging free-text reports for higher accuracy
[16]. SupCon [26], which uses limited structured labels,
performed slightly worse. Both MedCLIP and ConVIRT,
which adopt similar vision-language contrastive pretrain-
ing strategies, achieved comparable performance and con-
sistently outperformed SupCon and MoCo-CXR, which
rely on structured labels or image-only contrastive learning
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approaches [16, 18, 28, 36]. However, in our private data-
set, the cross-modal retrieval results showed that MedCLIP
performed worse than expected, possibly because the style
of the CXR reports differed from those used in its training.
This cross-dataset comparison suggests that PASTER may
retain its performance across datasets, indicating potential
robustness for clinical deployment in diverse settings. Con-
sidering our findings and the limited effectiveness of pre-
training on general images for medical image analysis [16],
as well as the privacy concerns associated with medical data
[37], we suggest the need for a multinational, multicenter
federated learning pre-training initiative using CXR and its
reports to enhance CXR analysis.

Al models like PASTER have the potential to enhance
scientific research by identifying previously underexplored
correlations in CXR data [23]. Despite the systematic
approaches used by radiologists, significant knowledge
gaps remain, and several studies have reported that Al
models can outperform radiologists in specific diagnostic
tasks [38, 39]. High-quality annotations of CXR images
can reveal unexpected applications, such as supporting
the detection of heart failure, which can be challenging for
radiologists [29, 40—42]. PASTER achieved high accuracy
for diseases not described in CXR reports, suggesting its
potential for further exploration of related CXR conditions.
This could lead to “opportunistic screening” [43], predict-
ing extensive nonadaptive disease risks from a single CXR,
similar to the incidental findings in radiology [44]. PASTER
could expand clinical indications beyond the current scope
of CXR by addressing certain diagnostic gaps.

This study has several limitations. The pretraining
dataset included only Taiwanese individuals, but further
analysis on public datasets provided supportive evidence
of performance on other populations. Owing to limited
computational resources, we could not conduct extensive
hyperparameter searches for CNN and ViT. PASTER was
trained only on frontal CXRs, resulting in somewhat lower
performance on datasets including lateral CXRs, such as
CheXpert. The absence of multiple radiologists’ collective
annotations may introduce bias [8], although echocardio-
graphic labels were treated as reference standards [7]. In
addition, this study did not include retrieval-based or simi-
larity-based downstream tasks. The probing results provide
indirect evidence of semantic alignment but do not directly
measure cross-modal retrieval ability. Future work could
address these limitations by incorporating multi-institu-
tional datasets, exploring federated learning strategies,
validating multiview radiographs with broader label con-
sensus, and expanding evaluation to include retrieval-based
and interpretability analyses.
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Conclusion

In this study, we explored the use of a pretrained multimodal
model for analyzing chest X-rays in real-world settings
where only limited labeled data are available. By leveraging
large-scale image-text pretraining, we showed that strong
performance can be achieved even with just a few hundred
labeled samples. Given that chest X-rays and radiologi-
cal reports are routinely available in clinical systems, such
models may provide an efficient and scalable foundation for
a wide range of downstream applications without the need
for burdensome annotation efforts.
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